Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38376820

RESUMO

Lacticaseibacillus paracasei has been regarded as a probiotic bacterium because of its role in anti-inflammatory properties and maintenance of intestinal barrier permeability. Here, we explored the anticolitic effects and mechanism of L. paracasei CCFM1222. The results showed that L. paracasei CCFM1222 supplementation could suppress the disease activity index (DAI) and colon length shortening in colitis mice, accompanied by a moderate increase in colonic tight junction proteins (ZO-1, occludin and claudin-1). L. paracasei CCFM1222 intervention significantly suppressed the levels of inflammatory cytokines (TNF-α, IL-1ß, and IL-6) and significantly elevated the activities of antioxidant enzymes (including SOD, GSH-Px, and CAT) in the colon by regulating the TLR4/MyD88/NF-κB and Nrf2 signaling pathways in colitis mice. In addition, L. paracasei CCFM1222 significantly shifted the gut microbiota, including elevating the abundance of Catabacter, Ruminiclostridium 9, Alistipes, and Faecalibaculum, as well as reducing the abundance of Mucispirillum, Escherichia-Shigella, and Salmonella, which was associated with the improvement of colonic barrier damage. Overall, these results suggest that L. paracasei CCFM1222 is a good candidate for probiotic of improving colonic barrier damage and associated diseases.

2.
Biomolecules ; 14(2)2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38397477

RESUMO

The vaginal epithelial barrier, which integrates mechanical, immune, chemical, and microbial defenses, is pivotal in safeguarding against external pathogens and upholding the vaginal microecological equilibrium. Although the widely used metronidazole effectively curtails Gardnerella vaginalis, a key pathogen in bacterial vaginosis, it falls short in restoring the vaginal barrier or reducing recurrence rates. Our prior research highlighted Lactobacillus crispatus CCFM1339, a vaginally derived Lactobacillus strain, for its capacity to modulate the vaginal epithelial barrier. In cellular models, L. crispatus CCFM1339 fortified the integrity of the cellular monolayer, augmented cellular migration, and facilitated repair. Remarkably, in animal models, L. crispatus CCFM1339 substantially abated the secretion of the barrier disruption biomarker E-cadherin (from 101.45 to 82.90 pg/mL) and increased the anti-inflammatory cytokine IL-10 (35.18% vs. the model), consequently mitigating vaginal inflammation in mice. Immunological assays in vaginal tissues elucidated increased secretory IgA levels (from 405.56 to 740.62 ng/mL) and curtailed IL-17 gene expression. Moreover, L. crispatus CCFM1339 enhanced Lactobacilli abundance and attenuated Enterobacterium and Enterococcus within the vaginal microbiome, underscoring its potential in probiotic applications for vaginal barrier regulation.


Assuntos
Lactobacillus crispatus , Vaginose Bacteriana , Humanos , Feminino , Animais , Camundongos , Gardnerella vaginalis/genética , Vaginose Bacteriana/tratamento farmacológico , Vaginose Bacteriana/microbiologia , Vagina/microbiologia , Lactobacillus/metabolismo
3.
Crit Rev Food Sci Nutr ; : 1-18, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38078699

RESUMO

Lactic acid bacteria (LAB) plays a crucial role in the establishment and maintenance of host health, as well as the improvement of some diseases. One of the major modes is the secretion of metabolites that may be intermediate or end products of the LAB's metabolism. In this review, we summarized some common metabolites (particularly short-chain fatty acids [SCFAs], bacteriocin, and exopolysaccharide [EPS]) from LAB in fermented foods and the gut for the first time. The effects of LAB-derived metabolites (LABM) on inflammation, oxidative stress, the intestinal barrier, and gut microbiota in inflammatory bowel disease (IBD) model are also discussed. The discovery of LABM and identification of IBD biomarkers are mainly attributed to the development of metabolomics technologies, especially nuclear magnetic resonance (NMR), gas chromatography-mass spectrometry (GC-MS), and liquid chromatography tandem mass spectrometry (LC-MS). The application of these metabolomics technologies in identification of LABM and IBD biomarkers are also summarized and analyzed. Although the beneficial effects of some LABM have been explored, undiscovered metabolites and their functions still need further investigations.

4.
Food Funct ; 14(23): 10375-10386, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37921630

RESUMO

Urolithin A (Uro-A), an intestinal microbiota metabolite of ellagitannin, has anti-aging properties. Through the direct intake of ellagitannin (or ellagic acid) and strains capable of producing Uro-A, the transformation of Uro-A in vivo is a potential method to develop anti-aging preparations. Therefore, this study aimed to investigate the dose-response relationship between the colonic infusion of Uro-A and its anti-aging effects. Results indicated that Uro-A exhibited a dose-dependent anti-aging effect in the colon, and the minimum effective dose might be 3.0 mg kg-1 day-1. The main manifestations were that, compared with the model group, 3.0 mg kg-1 day-1 and 15.0 mg kg-1 day-1 of Uro-A can increase forelimb grip strength by 11.87% and 16.72%, respectively, and increase the discrimination index by 92.14% and 238.11%, respectively. Both doses effectively inhibited the D-galactose-induced increase in oxidative stress levels in the body, muscle atrophy, and neuronal apoptosis. Additionally, Uro-A released through the colon could alleviate D-galactose-induced aging in mice by inhibiting NF-κB and mTOR targets, providing significant protection for motor and cognitive functions. These findings provide a theoretical basis for future application and development of ellagitannin (or ellagic acid) in combination with strains capable of producing Uro-A.


Assuntos
Taninos Hidrolisáveis , NF-kappa B , Camundongos , Animais , NF-kappa B/genética , Taninos Hidrolisáveis/farmacologia , Taninos Hidrolisáveis/metabolismo , Galactose , Ácido Elágico/farmacologia , Ácido Elágico/metabolismo , Cumarínicos/farmacologia , Cumarínicos/metabolismo , Serina-Treonina Quinases TOR/genética , Envelhecimento
5.
Int J Mol Sci ; 24(18)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37762155

RESUMO

BACKGROUND: Colonic and serum inosine are significantly reduced in patients with inflammatory bowel disease (IBD). METHODS: This study aimed to explore whether microbiome-derived inosine alleviates colitis and its underlying mechanisms. RESULTS: An inosine intervention effectively improved the clinical signs in colitis mice, suppressed inflammatory cytokines (tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and IL-1ß) by regulating the nuclear factor-kappa B (NF-κB) pathway, and elevated the activities of anti-oxidative enzymes (including superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px)) by regulating the nuclear factor erythroid-2 related factor 2 (Nrf2) pathway. Additionally, the inosine intervention significantly elevated the expression of tight junction proteins (ZO-1, occudin, and claudin-1) in mice with colitis. High-throughput sequencing revealed that the inosine intervention also prevented gut microbiota disorder by increasing the abundance of beneficial bacteria (Lachnospiraceae NK4A136 group, Romboutsia, Marvinbryantia, Clostridium sensu stricto 1, and Bifidobacterium) and reducing the abundance of harmful bacteria (Pseudomonas, Acinetobacter, and Tyzzerella) in mice with colitis. CONCLUSIONS: Inosine played a significant role in mitigating colitis-related intestinal barrier injury and could potentially be used for therapy in clinical practice.


Assuntos
Colite , Microbioma Gastrointestinal , Humanos , Camundongos , Animais , Dextranos/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/patologia , Colo/patologia , NF-kappa B/metabolismo , Administração Oral , Sulfatos/metabolismo , Sódio/metabolismo , Sulfato de Dextrana/toxicidade , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
6.
World J Microbiol Biotechnol ; 39(10): 280, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37587248

RESUMO

Lacticaseibacillus paracasei has beneficial effects on human health and holds promising potential as a probiotic for use in the development of functional foods, especially dairy products. This species can adapt to a variety of ecological niches and presents fundamental carbohydrate metabolism and tolerance to environmental stresses. However, the population structure, ecology, and antibiotic resistance of Lc. paracasei in diverse ecological niches are poorly understood. Reclassification of Lc. paracasei as a separate species of Lacticaseibacillus has stimulated renewed interest in its research, and a deeper interpretation of it will be important for screening strains beneficial to human health. Here, we collected 121 self-isolated and 268 publicly available Lc. paracasei genomes discussed how genomic approaches have advanced our understanding of its taxonomy, ecology, evolution, diversity, integrated prophage-related element distribution, antibiotic resistance, and carbohydrate utilization. Moreover, for the Lc. paracasei strains isolated in this study, we assessed the inducibility of integrated prophages in their genomes and determined the phenotypes that presented tolerance to multiple antibiotics to provide evidence for safety evaluations of Lc. paracasei during the fermentation processes.


Assuntos
Lacticaseibacillus paracasei , Humanos , Metagenômica , Lacticaseibacillus , Prófagos/genética , Resistência Microbiana a Medicamentos , Carboidratos
7.
Front Cell Infect Microbiol ; 13: 1210724, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37593763

RESUMO

Introduction: The use of cosmetics has become a habit for women. However, their influence on the microbial diversity of the skin has rarely been studied. Methods: Herein, the effect of cosmetics containing complex polysaccharides on the skin bacterial microbiota of female forehead and cheek areas was analyzed. Eighty volunteers were recruited and split into two groups (40 people each); one group was treated with cosmetics containing complex polysaccharides and the other with basic cream for 28 days. Skin samples were collected using sterilized cotton swabs, and 16S rDNA high-throughput sequencing was used to analyze the changes in skin bacterial microbiota composition before and after the intervention. Results and discussion: A total of twenty-four phyla were detected in the forehead and cheek skin samples of 80 volunteers, the top three of which were Proteobacteria, Firmicutes, and Actinobacteria. The main genera of the forehead skin bacterial microbiota were Cutibacterium (11.1%), Acinetobacter (10.4%), Enterococcus (8.9%), Ralstonia (8.8%), and Staphylococcus (8.7%), while those of the cheek skin bacterial microbiota were Staphylococcus (20.0%), Ralstonia (8.7%), Propionibacterium (7.9%), Acinetobacter (7.2%), and Bifidobacterium (6.0%). Compared with basic cream, the use of cosmetics containing complex polysaccharides significantly increased the relative abundance of Staphylococcus and Bacillus in the forehead and cheek and reduced the relative abundance of Propionibacterium and Bifidobacterium. Thus, cosmetics containing complex polysaccharides could modify the composition of skin bacterial microbiota, which may help to maintain stable conditions of the skin.


Assuntos
Actinobacteria , Cosméticos , Microbiota , Feminino , Humanos , Metagenoma , Pele , Bifidobacterium
8.
Foods ; 12(14)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37509878

RESUMO

Broccoli seed extract (BSE) is rich in glucoraphanin (GRP), which may be transformed by intestinal microbes into sulforaphane (SFN), a compound with strong anti-inflammatory and antioxidant activities. Liver injury usually presents with inflammation and oxidative damage. Thus, dietary BSE supplementation may be an effective approach for alleviating liver injury. In this study, a mouse lipopolysaccharide (LPS)-induced acute liver injury model was used to evaluate the preventive effect of BSE and explore the relevant mechanisms. Compared with the LPS model group, the mice in the BSE group showed significantly lower activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH) and higher levels of catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity. Meanwhile, BSE significantly reduced the levels of pro-inflammatory cytokines (including IL-6 and TNF-α) in the liver and increased the level of anti-inflammatory factor (IL-10), indicating that BSE had a good preventive effect on acute liver injury. Additionally, after BSE intervention, the diversity of intestinal microbiota in the mice was higher than that in the LPS model group. The relative abundance of Akkermansia and Lactobacillus increased, while the relative abundance of Xylanophilum decreased. A correlation analysis revealed that the activities of SOD, GSH-Px, CAT and levels of IL-10 were positively correlated with the relative abundance of Lactobacillus. Furthermore, sulforaphane (SFN) and (Sulforaphane-N-Acetyl-Cysteine) SFN-NAC were detected in the urine of the mice after BSE intervention. Both q-PCR and an immunohistochemical analysis showed that BSE significantly regulated the expression level of the NF-κB (IκB-α, NF-κB) and Nrf2 (Nrf2, p-Nrf2 and HO-1) signaling pathways in the liver. In conclusion, BSE was shown to reduce LPS-induced acute liver injury through the conversion of glucoraphanin into sulforaphane and the regulation of the gut microbiota composition. These results suggest that BSE could be a promising ingredient in functional foods.

9.
Crit Rev Food Sci Nutr ; : 1-18, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37417364

RESUMO

The prevalence of high-sugar diets and unhealthy habits exacerbates the production of advanced glycation end products (AGEs) in the body. When AGEs excessively accumulate in the body, they accelerate the aging process while directly or indirectly causing other complications that can seriously damage the body. Prevention of glycation damage is gaining increasing attention; however, a systematic strategy to combat glycation and specific glycation inhibitors is still lacking. By analyzing the process of glycation damage, we suggest that glycation damage can be mitigated by the inhibition of AGEs production, binding to proteins, and binding to receptors for advanced glycation end products, as well as the attenuation of downstream linkage reactions. This review summarizes the process of glycation damage. According to each step of the process, the review presents the corresponding anti-glycation strategies. Based on recent anti-glycation studies, we support the fabrication of glycation inhibitors by using natural plant products and fermentation products of lactic acid bacteria that partially exhibit anti-glycation properties. This review summarizes the mechanisms by which these dietary ingredients perform anti-glycation functions, providing relevant research evidence. We hope that this review will support and assist subsequent investigations in the development of anti-glycation inhibitors.

10.
Probiotics Antimicrob Proteins ; 15(4): 797-812, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37314694

RESUMO

Capsaicin (CAP) is usually reported to have many biological activities. However, a large intake of CAP may cause heartburn, gastrointestinal pain, and diarrhea. In this study, mice were gavaged with nine lactic acid bacteria (LAB) strains for two weeks, in which the mice were treated with CAP at the second week and lasted for one week. We tried to identify potential probiotics that could prevent CAP-induced intestinal injury and investigate the mechanisms. The modulation of transient receptor potential vanilloid 1 (TRPV1), levels of short-chain fatty acids (SCFAs), and the composition of gut microbiota were analyzed. The results showed that Lactobacillus reuteri CCFM1175 and Lactobacillus paracasei CCFM1176 effectively attenuated CAP-induced injuries to the ileum and colon, including relieving the damage to colonic crypt structures, increasing the number of goblet cells, decreasing levels of interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α), increasing levels of anti-inflammatory factors (IL-10), and reducing levels of substance P (SP) and calcitonin gene-related peptide (CGRP) in serum and colon tissue. Further analysis showed that L. reuteri CCFM1175 increased the relative abundance of Ruminococcaceae UCG_014 and Akkermansia. L. paracasei CCFM1176 downregulated the expression of TRPV1 in the ileal and colonic tissues and promoted the relative abundance of Ruminococcaceae UCG_014 and Lachnospiraceae UCG_006. These results indicate that L. reuteri CCFM1175 and L. paracasei CCFM1176 could prevent CAP-induced intestinal injury and be used as probiotics to improve the gastrointestinal health.


Assuntos
Lacticaseibacillus paracasei , Limosilactobacillus reuteri , Probióticos , Camundongos , Animais , Capsaicina , Colo/microbiologia , Íleo , Probióticos/farmacologia
11.
J Adv Res ; 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37353002

RESUMO

INTRODUCTION: Epidemiological evidences reveal that populations with psychological stress have an increased likelihood of respiratory viral infection involving influenza A virus (IAV) and SARS-CoV-2. OBJECTIVES: This study aims to explore the potential correlation between psychological stress and increased susceptibility to respiratory viral infections and how this may contribute to a more severe disease progression. METHODS: A chronic restraint stress (CRS) mouse model was used to infect IAV and estimate lung inflammation. Alveolar macrophages (AMs) were observed in the numbers, function and metabolic-epigenetic properties. To confirm the central importance of the gut microbiome in stress-exacerbated viral pneumonia, mice were conducted through microbiome depletion and gut microbiome transplantation. RESULTS: Stress exposure induced a decline in Lactobacillaceae abundance and hence γ-aminobutyric acid (GABA) level in mice. Microbial-derived GABA was released in the peripheral and sensed by AMs via GABAAR, leading to enhanced mitochondrial metabolism and α-ketoglutarate (αKG) generation. The metabolic intermediator in turn served as the cofactor for the epigenetic regulator Tet2 to catalyze DNA hydroxymethylation and promoted the PPARγ-centered gene program underpinning survival, self-renewing, and immunoregulation of AMs. Thus, we uncover an unappreciated GABA/Tet2/PPARγ regulatory circuitry initiated by the gut microbiome to instruct distant immune cells through a metabolic-epigenetic program. Accordingly, reconstitution with GABA-producing probiotics, adoptive transferring of GABA-conditioned AMs, or resumption of pulmonary αKG level remarkably improved AMs homeostasis and alleviated severe pneumonia in stressed mice. CONCLUSION: Together, our study identifies microbiome-derived tonic signaling tuned by psychological stress to imprint resident immune cells and defensive response in the lungs. Further studies are warranted to translate these findings, basically from murine models, into the individuals with psychiatric stress during respiratory viral infection.

12.
Foods ; 12(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37297362

RESUMO

Naringenin and apigenin are common flavonoids derived from edible plants with the potential to alleviate inflammation and improve skin antioxidation. This study aimed to evaluate the effects of naringenin and apigenin on oleic acid-induced skin damage in mice and compare their underlying mechanisms of action. Triglycerides and non-esterified fatty acids were significantly decreased by naringenin and apigenin, while apigenin intervention resulted in a better recovery of skin lesions. Naringenin and apigenin improved the antioxidative abilities of the skin by increasing catalase and total antioxidant capacity levels and decreasing malondialdehyde and lipid peroxide levels. The release of skin proinflammatory cytokines, such as interleukin (IL)-6, IL-1ß, and tumor necrosis factor α, was inhibited after naringenin and apigenin pretreatments, but naringenin only promoted the excretion of IL-10. Additionally, naringenin and apigenin regulated antioxidant defense and inflammatory response by activating nuclear factor erythroid-2 related factor 2-dependent mechanisms and suppressing the expression of nuclear factor-kappa B. In summary, naringenin and apigenin are prospective ingredients that contribute to the amelioration of skin damage by activating anti-inflammatory and antioxidative responses.

13.
J Agric Food Chem ; 71(16): 6348-6357, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37040550

RESUMO

Urolithin, intestinal microbiota metabolites of ellagitannin-rich foods, exhibit anti-aging activities. However, urolithin A is significantly superior to other types of urolithin with regard to this anti-aging function. This study aimed to screen edible urolithin A-producing strains of bacteria and explore the corresponding anti-aging efficacy of fermented products produced by these strains using Caenorhabditis elegans as a model. Our results showed that the Lactobacillus plantarum strains CCFM1286, CCFM1290, and CCFM1291 converted ellagitannin to produce urolithin A; the corresponding yields of urolithin A from these strains were 15.90 ± 1.46, 24.70 ± 0.82, and 32.01 ± 0.97 µM, respectively. Furthermore, it was found that the pomegranate juice extracts fermented by the CCFM1286, CCFM1290, and CCFM1291 strains of L. plantarum could extend lifespan by 26.04 ± 0.12, 32.05 ± 0.14, and 46.33 ± 0.12%, respectively, by improving mitochondrial function and/or reducing reactive oxygen species levels. These findings highlight the potential application of this fermentation in the subsequent development of anti-aging products.


Assuntos
Taninos Hidrolisáveis , Mitofagia , Animais , Taninos Hidrolisáveis/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Caenorhabditis elegans/metabolismo , Fermentação , Envelhecimento
14.
J Sci Food Agric ; 103(12): 5958-5969, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37099000

RESUMO

BACKGROUND: Bifidobacterium pseudolongum is widely exists in mammal gut and its abundance is associated with human and animal health. The present study aimed to investigate the potential mechanisms of B. pseudolongum CCFM1253 on protecting against lipopolysaccharide (LPS)-induced acute liver injury (ALI) by metagenomic analysis and liver metabolomic profiles. RESULTS: Bifidobacterium pseudolongum CCFM1253 preintervention remarkably attenuated the influence of LPS on serum alanine transaminase and aspartate amino transferase activities. B. pseudolongum CCFM1253 preintervention remarkably attenuated the inflammation responses (tumor necrosis factor-α, interleukin-1ß, and interleukin-6) and elevated antioxidative enzymes activities [total antioxidant capacity, superoxide dismutase, catalase, and glutathione peroxidase] in ALI mice by intervening in the Nf-kß and Nrf2 pathways, respectively. Bifidobacterium pseudolongum CCFM1253 treatment elevated the proportion of Alistipes and Bifidobacterium, and decreased the proportion of uncultured Bacteroidales bacterium, Muribaculum, Parasutterella and Ruminococcaceae UCG-010 in ALI mice, which were strongly correlated with the inhibition of inflammation responses and oxidative stress. Untargeted liver metabolomics exhibited that the hepatoprotective efficacy of B. pseudolongum CCFM1253 might be achieved by altering liver metabolites-related riboflavin metabolism, phenylalanine metabolism, alanine, citrate cycle (tricarboxylic acid cycle), and so on. Furthermore, riboflavin exposure could control the contents of malondialdehyde, superoxide dismutase, and catalase in hydrogen peroxide-treated HepG2 cells. CONCLUSION: Bifidobacterium pseudolongum CCFM1253 can effectively alleviate inflammatory response and oxidative stress, and regulate the intestinal microbiota composition and liver metabolism, and elevate the liver riboflavin content in LPS-treated mice. Therefore, B. pseudolongum CCFM1253 could serves as a potential probiotic to ameliorate the host health. © 2023 Society of Chemical Industry.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Probióticos , Humanos , Animais , Camundongos , Catalase/metabolismo , Lipopolissacarídeos , Bifidobacterium/metabolismo , Antioxidantes/metabolismo , Fígado/metabolismo , Metabolômica , Superóxido Dismutase/metabolismo , Inflamação/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Mamíferos/metabolismo
15.
Int J Mol Sci ; 24(7)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37047557

RESUMO

Constipation is a common disease affecting humans. Bifidobacterium longum is reportedly effective in relieving constipation. Current studies generally focus on the dose-response relationship of oral doses; however, the dose-effect relationship of B. longum in the colon, which is the primary site where B. longum exerts constipation-relieving effects, to treat constipation has not been studied. Herein, three strains of B. longum (FGSZY6M4, FJSWXJ10M2, and FSDJN6M3) were packaged in colon-released capsules to explore the dose-effect relationship in the colon. For each strain, three groups of capsules (104, 106, and 108 CFU/capsule, respectively) and one group of free probiotics (108 CFU/mL) were used to explore the colonic dose effect of B. longum. The results showed that the three strains of B. longum improved fecal water content and promoted intestinal motility by regulating gastrointestinal peptide (MTL, GAS, and VIP), aquaporin-3, and 5-hydroxytryptamine levels while promoting gastrointestinal motility and relieving constipation by regulating the intestinal flora composition of constipated rats and changing their metabolite content (short-chain fatty acids). Among the three free bacterial solution groups (108 CFU/mL), FGSZY6M4 was the most effective in relieving constipation caused by loperamide hydrochloride in rats. The optimal effective dose of each strain was 6M4 (104 CFU/day), 10M2 (106 CFU/day), and S3 (108 CFU/day) of the colon-released capsules. Therefore, for some effective strains, the dose of oral probiotics can be reduced by colon-released capsules, and constipation can be relieved without administering a great number of bacterial solutions. Therefore, investigating the most effective dose of B. longum at the colon site can help to improve the efficiency of relieving constipation.


Assuntos
Bifidobacterium longum , Probióticos , Humanos , Ratos , Animais , Loperamida/efeitos adversos , Constipação Intestinal/induzido quimicamente , Constipação Intestinal/tratamento farmacológico , Colo , Trato Gastrointestinal/microbiologia , Probióticos/farmacologia
16.
Crit Rev Food Sci Nutr ; : 1-17, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36971127

RESUMO

Fresh mushrooms have a long history of cultivation and consumption, but high postharvest losses are a concern in the commercial production of mushrooms worldwide. Thermal dehydration is widely used in the preservation of commercial mushrooms, but the flavor and taste of mushrooms are significantly altered after dehydration. Non-thermal preservation technology, which effectively maintains the characteristics of mushrooms, is a viable alternative to thermal dehydration. The objective of this review was to critically assess the factors affecting fresh mushroom quality after preservation is remarkable, with the ultimate goal of developing and promoting non-thermal preservation technology for preserving fresh mushroom quality, effectively extending the shelf life of fresh mushrooms. The factors influencing the quality degradation process of fresh mushrooms discussed herein include the internal factors associated with the mushroom itself and the external factors associated with the storage environment. We present a comprehensive discussion of the effects of different non-thermal preservation technologies on the quality and shelf life of fresh mushrooms. To prevent quality loss and extend the shelf life after postharvest, hybrid methods, such as physical or chemical techniques combined with chemical techniques, and novel nonthermal technologies are highly recommended.

17.
Food Funct ; 14(6): 2847-2856, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36880339

RESUMO

Periodontitis is a chronic inflammatory disease induced by subgingival microbial dysbiosis, characterised by inflammation of the soft tissues of the periodontium and progressive loss of alveolar bone. Limosilactobacillus fermentum CCFM1139 is a probiotic with the potential to relieve periodontitis in vitro and in vivo. Due to the cost of active strain in production applications, we considered the effectiveness of bacterial components and metabolites in alleviating experimental periodontitis. Therefore, this study investigated the effect of heat-inactivated Limosilactobacillus fermentum CCFM1139 and its supernatant in the development of experimental periodontitis through animal experiments. The results showed that active, heat-inactivated Limosilactobacillus fermentum CCFM1139 and its supernatant all significantly reduced IL-1ß levels in gingival tissue and serum (p < 0.05). Micro-computed tomography (micro CT) analysis showed that the active and heat-inactivated Limosilactobacillus fermentum CCFM1139 reduced alveolar bone loss in rats with periodontitis by 25.6% and 15.9% respectively (p < 0.05), with no change in percentage of bone volume (p > 0.05). In histomorphometric analysis, active Limosilactobacillus fermentum CCFM1139 showed better results in reducing alveolar bone loss and reducing inflammatory cell recruitment at the second molar. In addition, there was no significant difference in the number of tartrate-resistant acid phosphatase (TRAP) positive cells after in all experimental groups (p > 0.05). Therefore, heat-inactivated Limosilactobacillus fermentum CCFM1139 or its supernatant also have the ability to relieve periodontitis, and their alleviating effect may focus on the regulation of inflammatory response.


Assuntos
Perda do Osso Alveolar , Limosilactobacillus fermentum , Periodontite , Ratos , Animais , Microtomografia por Raio-X , Temperatura Alta , Modelos Animais de Doenças
18.
Carbohydr Polym ; 299: 120153, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36876779

RESUMO

Hyaluronic acid (HA) is key to the stability of the internal environment of tissues. HA content in tissues gradually decreases with age, causing age-related health problems. Exogenous HA supplements are used to prevent or treat these problems including skin dryness and wrinkles, intestinal imbalance, xerophthalmia, and arthritis after absorption. Moreover, some probiotics are able to promote endogenous HA synthesis and alleviate symptoms caused by HA loss, thus introducing potential preventative or therapeutic applications of HA and probiotics. Here, we review the oral absorption, metabolism, and biological function of HA as well as the potential role of probiotics and HA in increasing the efficacy of HA supplements.


Assuntos
Ácido Hialurônico , Probióticos , Suplementos Nutricionais
19.
Crit Rev Food Sci Nutr ; : 1-21, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36728926

RESUMO

Epigallocatechin gallate (EGCG), a typical flavone-3-ol polyphenol containing eight free hydroxyl groups, is associated with a variety of bioactivities, such as antioxidant, anti-inflammatory, anti-cancer, and antibacterial activities. However, the poor bioavailability of EGCG restricts its use. In this review, we discuss the processes involved in the absorption and metabolism of EGCG, with a focus on its metabolic interactions with the gut microbiota. Next, we summarize the bioactivities of some key metabolites, describe the biotransformation of EGCG by different microorganisms, and discuss its catabolism by specific bacteria. A deeper understanding of the absorption, metabolism, and biotransformation of EGCG may enable its disease-preventive and therapeutic properties to be better utilized. This review provides a theoretical basis for further development and utilization of EGCG and its metabolites for improving the gut microbiota and physiological health.

20.
Probiotics Antimicrob Proteins ; 15(3): 785-796, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36790661

RESUMO

Blautia is a genus of anaerobic microbe extensively present in the intestine and feces of mammals. This study aims to investigate the influence of Blautia producta to prevent lipopolysaccharide (LPS)-induced acute liver injury (ALI) and elaborate on its hepatoprotective mechanisms. B. producta D4 and DSM2950 pretreatment decreased the activities of serum aspartate transferase (AST), and alanine transaminase (ALT) in mice with LPS treatment significantly decreased the levels of inflammatory tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6) and increased the activities of antioxidative superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px). Compared with the model group, B. producta D4 and B. producta DSM2950 pretreatment slightly increased the levels of cecal propionic acid, isobutyric acid, butyric acid, valeric acid, and isovaleric acid (p > 0.05). Metagenomic analysis showed that B. producta D4 and DSM2950 pretreatment remarkably increased the relative abundance of [Eubacterium] xylanophilum group, Lachnospira, Ruminiclostridium, Ruminiclostridium 9, Coprococcus 2, Odoribacter, Roseburia, Alistipes, and Desulfovibrio in ALI mice, and their abundance is negatively related to the levels of inflammatory TNF-α, IL-1ß, and IL-6 as revealed by Spearman's correlation analysis. Moreover, transcription and immunohistochemistry analysis revealed that B. producta D4 and B. producta DSM2950 intervention remarkably suppressed the transcription and expression levels of hepatic Tlr4, MyD88, and caspase-3 (p < 0.05). These data indicated that B. producta may be a good candidate for probiotics in the prevention of ALI.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Probióticos , Camundongos , Animais , Lipopolissacarídeos/toxicidade , Interleucina-6 , Fator de Necrose Tumoral alfa , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...